excuter/op-mem-ompsimd 支持算子列表

本页面由 excuter/op-mem-ompsimd/src/deepx/op/opfactory.hpp 生成,请勿手动修改

Operation

Data Types

Math Formula

IR Instruction

sum

float32, float64

T2 = sum(T1, dims=[1,2])

sum@float32 T1 1 2 -> T2

matmul

float32, float64

T3 = T1 @ T2

matmul@float32 T1 T2 -> T3

concat

float32, float64

T3 = concat([T1, T2], axis=3)

concat@float32 T1 T2 3 -> T3

pow_scalar

float32, float64

T2 = T1 ^ 2.0

pow_scalar@float32 T1 2.0 -> T2

pow

float32, float64

T3 = T1 ^ T2

pow@float32 T1 T2 -> T3

max_scalar

float32, float64

T2 = max(T1, 0.0)

max_scalar@float32 T1 0.0 -> T2

exp

float32, float64

T2 = exp(T1)

exp@float32 T1 -> T2

min_scalar

float32, float64

B= min(A, 1.0)

min_scalar@float32 A 1.0 -> B

sqrt

float32, float64

T2 = sqrt(T1)

sqrt@float32 T1 -> T2

div

float32, float64

T3 = T1 / T2

div@float32 T1 T2 -> T3

mul

float32, float64

T3 = T1 * T2

mul@float32 T1 T2 -> T3

newtensor

float32, float64, int16, int32, int64, int8

T1 = zeros(shape)

newtensor@float32 shape -> T1

print

any

print@any ->

min

float32, float64

C = min(A,B)

min@float32 A B -> C

copytensor

float32, float64, int16, int32, int64, int8

T2 = T1.copy()

copytensor@float32 T1 -> T2

clonetensor

float32, float64, int16, int32, int64, int8

T2 = T1.clone()

clonetensor@float32 T1 -> T2

arange

float32, float64

arange(start=0.0, step=1.0,T1)

arange@float32 0.0 1.0 -> T1

argset

float32, float64, int32

shape = [3, 4, 5]

argset@int32 3 4 5 -> shape

sub

float32, float64

T3 = T1 - T2

sub@int32 T1 T2 -> T3

mul_scalar

float32, float64

T2 = T1 * 2.0

mul_scalar@float32 T1 2.0 -> T2

uniform

float32, float64

uniform(-1.0, 1.0,T1)

uniform@float32 -1.0 1.0 -> T1

add

float32, float64

T3 = T1 + T2

add@int32 T1 T2 -> T3

max

float32, float64

T3 = max(T1,T2)

max@float32 T1 -> T2

constant

float32, float64

T1 = full(shape, 0.0)

constant@float32 0.0 -> T1

rdiv_scalar

float32, float64

T3 =1 / T2

rdiv_scalar@float32 1 T2 -> T3

add_scalar

float32, float64

T2 = T1 + 1.0

add_scalar@float32 T1 1.0 -> T2

transpose

any

T2 = transpose(T1, dimorder=[1,0])

transpose@float32 T1 1 0 -> T2

div_scalar

float32, float64

T2 = T1 / 2.0

div_scalar@float32 T1 2.0 -> T2

reshape

any

T2 = reshape(T1, [2,3,4])

reshape@float32 T1 2 3 4 -> T2